a2 United States Patent

Strong et al.

US009189360B2

US 9,189,360 B2
Nov. 17, 2015

(10) Patent No.:
(45) Date of Patent:

(54) PROCESSOR THAT RECORDS TRACING
DATA IN NON CONTIGUOUS SYSTEM
MEMORY SLICES

(71)

(72)

(73)

")

@

(22)

(65)

(1)

Applicants:Beeman C. Strong, Portland, OR (US);
Jason W. Brandt, Austin, TX (US);
Tsvika Kurts, Haifa (IL); Peter
Lachner, Heroldstatt (DE); Itamar
Kazachinsky, Netanya (IL); Stephen J.
Robinson, Austin, TX (US); Peggy J.
Irelan, Chandler, AZ (US)

Inventors:

Beeman C. Strong, Portland, OR (US);

Jason W. Brandt, Austin, TX (US);
Tsvika Kurts, Haifa (IL); Peter
Lachner, Heroldstatt (DE); Itamar
Kazachinsky, Netanya (IL); Stephen J.
Robinson, Austin, TX (US); Peggy J.
Irelan, Chandler, AZ (US)

Assignee:

Intel Corporation, Santa Clara, CA

Us)

Notice:

Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 222 days.

Appl. No.:

Filed:

US 2014/0372987 Al

Int. Cl1.

GO6F 12/00
GO6F 11/34
GO6F 11736
GO6F 11/32
GO6F 12/02
GO6F 12/06

13/918,940

Jun. 15,2013

Prior Publication Data

Dec. 18, 2014

(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)

FETCH BASE
ADDRESS OF
FIRST DIRECTORY
TABLE
- 401

FETCH FIRST ENTRY

(52) US.CL
CPC GO6F 11/34 (2013.01); GO6F 11/323
(2013.01); GO6F 11/3466 (2013.01); GO6F
1173636 (2013.01); GO6F 11/3664 (2013.01);
GO6F 11/3668 (2013.01); GO6F 12/023
(2013.01); GOGF 12/06 (2013.01)
Field of Classification Search

CPC ... GO6F 12/023; GOG6F 12/06; GOGF 11/3636;
GOGF 11/3664; GOGF 11/3668; GOGF 11/323;
GOG6F 11/3466

See application file for complete search history.

(58)

(56) References Cited
U.S. PATENT DOCUMENTS

5,887,167 A *
7,035,989 B1*

3/1999 Sutton 719/314
4/2006 Hinkeretal. 711/171

* cited by examiner

Primary Examiner — Shawn X Gu
(74) Attorney, Agent, or Firm — Nicholson de Vos; Webster
& Elliot, LLP

(57) ABSTRACT

A method is described that involves referring to first infor-
mation from a directory table in system memory. The first
information includes location information and size informa-
tion of a first slice of system memory where first tracing data
is to be stored. The method also includes tracking the amount
of tracing data stored in the first slice of system memory and
comparing the amount against the size information. The
method also includes, before the first slice of system memory
is filled, referring to second information from the directory
table in system memory, where, the second information
includes location information and size information of a sec-
ond slice of system memory where second tracing datais to be
stored. The first slice is not contiguous with the second slice
of system memory.

20 Claims, 13 Drawing Sheets

IN DIRECTORY TABLE

USE POINTER INFO
IN LAST DIRECTORY
TABLE ENTRY TO FIND
NEXT DIRECTORY TABLE

406

US 9,189,360 B2

Sheet 1 of 13

Nov. 17, 2015

U.S. Patent

(14Y HOI4d)
} Ol
HISN
01}
HSIN N
> 201
r1THr—1— ¢ IIIIIIIIIIIII i |
_ a
_ r—T - -AI." 10! |
_ 1 | I
e | _
104 !
Y I
_ L [N R I N N S S p—
_ . oﬂ . g1
B0 <=+ 7
<1y 10!
AHOWIN WILSAS S0} k N N
801 ST3AFT ONIHOVD €0/ INITIdId
NOLNDIXT
NOLLONYLSNI

d0S§S7004d 004 .\

US 9,189,360 B2

Sheet 2 of 13

Nov. 17, 2015

U.S. Patent

¢ ld

0l¢

/e e: o

Lic

7

| T

N~ .

I

e T s

STIATTONIHOVD

L —_—

10¢ 3NI13did
NOLLNI3X3
NOILONYLSNI

408830044 00¢ k

U.S. Patent Nov. 17, 2015 Sheet 3 of 13 US 9,189,360 B2

Vs 305
Ml T TS TS S P
M TN

’/////////////)////////////A\3,,_M

340~ 350 351 3180 3182

314 —»i
F////////////////////////// }313

0000000000
I

NS A

o3 M

N s N s
N s

S N g

f314_1

LLL SIS S
((LSS LSS
314

([N

VL 1

((A

FIG. 3

U.S. Patent Nov. 17, 2015 Sheet 4 of 13 US 9,189,360 B2

FETCH BASE
ADDRESS OF
FIRST DIRECTORY

TABLE
k401

Y

FETCH FIRST ENTRY |
IN DIRECTORY TABLE |

\402
Y

STORE TRACING DATA
IN FIRST MEMORY SLICE USEPOINTER VD

_403 | INLAST DIRECTORY

" NEXT DIRECTORY TLE
CONTINUE TO FETCH -
DIRECTORY TABLE _ 406
- ENTRIES AND STORE
TRACING DATA IN
MEMORY SLICES

MEMORY SLIC YES
OF DIRECTORY

JABLE ?FILLED

405

FIG. 4

US 9,189,360 B2

Sheet 5 0of 13

Nov. 17, 2015

U.S. Patent

O

SLIg v9
16 siaisiBay ysep e

0S6 34 318103

1974 INFO3M0vd XA
SLig o

a3sviy

silgos

(d428%)
GFG I HILSIDTY WOVLS d4 ¥YIWOS

576 sig)sifioy asodingd |eiousn

Lz
S1ig 957
AT—
%@%mﬁ
Shuuux ShuuA
Ouiuix OwiA Wz
{ §)
SLg Zis
016 ss8)s16ay 10108
SLigv9 X ot

006 F-HNLOILIHOHY H3LSID3Y

¢'old

US 9,189,360 B2

Sheet 6 of 13

Nov. 17, 2015

U.S. Patent

|29
| LINWOD

89 "0l

709
ONIQ003d
HIONTT

o9 ., v/9
< bl 1NN NN JHOVO VIvd | 029 LINN
JHOVD 7.9 AHOWNAN
Al LINN €71 Y1Va
099 {S)H43LSN1D NOILAD3XT
#99 (S)LINN 299
$SA00Y {SILINN
AMOWIN NOILNO3X3
.—l A
L —_—
_
859 (S)LINN ST HILSIDTY TWIISAHd _
' _
—— e —— — ———2_, %59 |
| 959 (S)LINN ¥3INAIHOS Il LN NS |
llllll I e L
__ ¢59 LINN ! 059 LINN
- &Eﬁo@« ELLE I INIONT NOILNOIXT
. 089
_ UARRIESEEER | LINN ONZ INO¥H
{___ 80RO NOLLONYISNE | /
1 069 340D
959 LIND @71 NOILONEISNE | Z£9 1IN
M 5E0 LINA SHOYO NOILONHISNE | NOILOIOTMd HONYE
|N|Nm| 819 719 T T T T
onranyn | 3LEM 919 vy AdoW3aW z19 | 019 | 809 | 909
NOLLdToxal AHONaW | 39v1$31n33x3 /av3d | 3INAIHOS [PNINYNTY D0 TIv[30093a
i ST yse ||

v9'9l4

09
HO134

009 INT3dId

US 9,189,360 B2

Sheet 7 of 13

Nov. 17, 2015

U.S. Patent

2oL
HAOMLIN ONIY
A
4

V90,
JHOVD YLVa LT
i _

, L
azzs vzzl
1NIANOD LHIANOD
YINNN DIHFANN

1
il
SYILSIOTY
HOLO3A
o A
vYy o Y
0zL vz/
JZZMS | | | 3LvOndad
Yyy | Y
871
A7V HOLO3A AWML
i
| ,
92!

SHILSIOTY HSVI FLIEM

a/'9l4

0/
JHOYD
21 3HL 40 1358NS W20
A
Y
90,
3HOVO 11
A : A
4 : Y
yiL i A%)
SHILSIOFY || SHILSIOIY
HOL103A | yvIvos
A : i
Y A
0bL 80/
LIND ; 1NN
JOL03A UV IVOS
I I
| Y
00/
300030 NOILONYLSNI
L/AnE

US 9,189,360 B2

Sheet 8 of 13

Nov. 17, 2015

U.S. Patent

918 (S)LINN
HITIONINGD
sng

I 7I8ISILND
| HITIONINCD
I ANMOWIN

| Q3LYHOIiN

018 1INN
INIOY WILISAS

-
“

908 (SILINN HOYD Q3HYHS

- =N

I onpog | |
Lo | eea
I 3Hov0 | "

G e — —

NC08 3400

YH08
(SILINA
JHOYD

v208 3400

_

_

_

_

| 8'9H
80801907 |
350dMNd |
WI03dS |

//foommOmwmooma

U.S. Patent Nov. 17, 2015 Sheet 9 of 13 US 9,189,360 B2

900 7 9156
\ l I | 910

| =
- [_—:l* PROCESSOR |—— —
| L 995 |
Lo s // | _— o0
B | [controLLER
co- HUB 920
| processor |~ T amen 990 i MEMORY
L —_— J i e —
|
960 — =
-
/o JI IOH 950 |
L |

FIG. 9

US 9,189,360 B2

Sheet 10 of 13

Nov. 17, 2015

U.S. Patent

/ 0001

vivd 04914
8701 ; F——t— 0201
dn¥ 3099 | s3om3a | 3snow
J9YHOLS VIYE Lol WINOD 2ok /QHYO8AN
0201
- . ,4 . m >
5101 $70) 710} 8101
¥0S83004d on oiany SIDIA3Q O/ 390189 Sng
o101 [r—]
opor —1 | zeoi # | oo
g0 — dd| 0801 L3SdHD d L g1 momwmoom%o
w0~ & —]
$601 ¥ 2901 —1 §
0eol drd dd < dd dd 0.0
930} — ggg; — \ \ Lo
2101
0501
2801 L —7
i N
p£0L 2804
AHOWNIN « AHONIW
H0SSI00EA00
750$33004d ¥0SS3004d

US 9,189,360 B2

Sheet 11 of 13

Nov. 17, 2015

U.S. Patent

7e0l
ReIE

g0l
AHONIW

L1 '9ld
Silh
O ADYOTT
0601 9601 —
138dIHD
860} ——1 dd 780} —1 d*d
geL « %9\» \J
———P
080} dd dd | dd da-d 001
9801 — gag| — \ g0 [y
0504 B
— 780 Lot —
10 10
HOSS5I00Nd H0SSIO0Nd
———
i

W S30IA3T O/

/// 0011

US 9,189,360 B2

Sheet 12 of 13

Nov. 17, 2015

U.S. Patent

718 (SILINN
0vel 052} HITIOUINOD
LND AYIdSIq | SN hives AHOWAN
CALYHOIINI
918 (SILINN R
mwjmwwzeo 2077 TSIINA 1O INNODSaIN
“ |
|
_ 908 (SJLINN IHIYD O3MVHS
1”””%% -——=
b1 onpog 108
|1 (SINn | “ cow | | (SN
018 LINN “ LN 3HOYI
INTOW NILSAS | NZ08 3400 | Y208 3400

0l¢l H0SS300Hd NOLLYOINddY

0zz1 (S)40553004d0D

/ 00z}

diHO ¥ NO W31SAS

¢l "oid

US 9,189,360 B2

Sheet 13 of 13

Nov. 17, 2015

U.S. Patent

¢l ol

Z0EL 3OYNONYT T3ATT HOH

80E1 ¥3TdWOD
135S NOILONYLSNI
JALLYNSSLTY

POEL W3 TIdNCO 98X

(90¢1 3000 AdYNIg 98X

/l

ZLEL HILHIANOD |
NOILONYLSN «
01£1 3009 AYYNIS
\ 135S NOILONYISN
TIYALIOS JAILYNYILTY
IvmaevH 0 N | T
\
Sel 71€1 I¥0D 13S NOILONYLSNI
3400 13S NOILONYLONI
99X INO LSV 98X NY LNOHLIM H0SS3004d
1% HLIM H0SSI00%d

US 9,189,360 B2

1
PROCESSOR THAT RECORDS TRACING
DATA IN NON CONTIGUOUS SYSTEM
MEMORY SLICES

BACKGROUND

Software developers often desire to “trace” the execution
of'their code. Tracing involves keeping a record of the specific
sequence of instructions actually executed by software during
its runtime. By logging the sequence of instructions, devel-
opers can study the instruction sequence to, e.g., identify
flaws in the structure and/or flow of the code.

Tracing is typically supported by the underlying processor
hardware which contains special logic circuitry to identify
instructions as they execute and store them (or respective
identifiers of them) in system memory in the order that they
execute. For simplicity the remainder of the document may
refer to the content of the tracing data as “tracing data”,
“tracing information”, and the like. The reader will under-
stand that tracing data corresponds to actual copies of instruc-
tions, portions thereof or some other identifier of the indi-
vidual instructions or sequence thereof.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example and
not limitation in the figures of the accompanying drawings, in
which like references indicate similar elements and in which:

FIG. 1 shows a prior art processor that supports tracing;

FIG. 2 shows an improved processor that supports tracing;

FIG. 3 shows a diagram of memory slices and directory
tables within a system memory;

FIG. 4 shows a method performed by the processor of FIG.
2.

FIG. 5 is a block diagram of a register architecture accord-
ing to one embodiment of the invention;

FIG. 6A is a block diagram illustrating both an exemplary
in-order pipeline and an exemplary register renaming, out-of-
order issue/execution pipeline according to embodiments of
the invention;

FIG. 6B is a block diagram illustrating both an exemplary
embodiment of an in-order architecture core and an exem-
plary register renaming, out-of-order issue/execution archi-
tecture core to be included in a processor according to
embodiments of the invention;

FIGS. 7A-B illustrate a block diagram of a more specific
exemplary in-order core architecture, which core would be
one of several logic blocks (including other cores of the same
type and/or different types) in a chip;

FIG. 8 is a block diagram of a processor that may have
more than one core, may have an integrated memory control-
ler, and may have integrated graphics according to embodi-
ments of the invention;

FIG. 9 is a block diagram of a exemplary system in accor-
dance with an embodiment of the present invention;

FIG. 10 is a block diagram of a first more specific exem-
plary system in accordance with an embodiment of the
present invention;

FIG. 11 is a block diagram of a second more specific
exemplary system in accordance with an embodiment of the
present invention;

FIG. 12 is a block diagram of a SoC in accordance with an
embodiment of the present invention;

FIG. 13 is a block diagram contrasting the use of a software
instruction converter to convert binary instructions in a source

35

40

45

55

60

65

2

instruction set to binary instructions in a target instruction set
according to embodiments of the invention.

DETAILED DESCRIPTION

FIG. 1 shows an embodiment of a prior art processor 100
having logic circuitry 102 to support tracing. Path 101 corre-
sponds to the data path that is utilized within the processor by
the tracing process. As instructions are executed by an
instruction execution pipeline 103, a representation of the
“flow” of these instructions (“tracing data™) is directed
toward a system memory interface 104 which stores the flow
information in system memory 105.

A noteworthy aspect of the flow of tracing data delivered
along path 101 is that no virtual to physical address transla-
tion is performed nor is any caching. Here, as is understood in
the art, a normal flow of data from an instruction execution
pipeline (e.g., data that is created by the executing code)
typically involves both. Path 106 represents such a normal
flow and includes both a virtual-to-physical address transla-
tion stage 107 and one or more caching levels 108.

Virtual-to-physical address translation involves the con-
version of the actual addresses called out by an executing
software application (which may be written to assume it has
the entirety of system memory 105 available to store its
instructions and data) to the actual physical system memory
address where the instructions and data of the software appli-
cation are actually stored (which may be within only a slice of
system memory space that is given to the application).

Caching is used to speed up software execution. By storing
an application’s more frequently accessed instructions and
dataina caching level 108 rather than system memory 105 the
time delay of writing/reading instructions/data to/from sys-
tem memory 105 is avoided (that is, a caching level is essen-
tially a storage resource having faster access times than sys-
tem memory).

The avoidance of virtual-to-physical address translation
and caching for tracing data helps keep the operation of the
software being traced as if no tracing were being performed.
Said another way, if tracing data utilized virtual-to-address
translation or caching, the storage resources used to imple-
ment virtual-to-physical address translation tables or the vari-
ous caching levels would be used to hold tracing data as
opposed to the software application’s data. If that were the
case, the tracing would “affect” the application’s execution
(e.g., by having more translation table lookup misses and
more cache lookup misses). Because the tracing would affect
the application’s operation, the tracing data would reflect the
operation of an “affected” application and not an application
that is operating normally. In this case, the value of the tracing
data would be questionable because it would not reflect the
execution of the application as it operates normally.

Another feature of the prior art tracing approach of FIG. 1
is the use of a single contiguous block of system memory
space 109 to store the tracing data. Here, a user (e.g., one or
more of an actual person, an operating system and/or virtual
machine monitor) will configure a single block of contiguous
address space 109 within system memory 105 where the
tracing data is to be stored. The user informs the processor
100 of the existence and location of the large block of con-
tiguous address space 109 by way of a machine specific
register 110 that records the starting address 111 of the block
109.

The logic circuitry 102 that oversees the storage of the
tracing data essentially prepares a write request containing a
packet (e.g., a cache line’s worth) of tracing data and an
address associated with the block 109 and forwards the write

US 9,189,360 B2

3

request to the system memory interface 104. The system
memory interface 104 then stores the packet of tracing data
within the block 109 at the specified address. Logic 102
initially uses the starting address 111 of the block 109 for the
initial tracing data and sequentially increases the block
addresses as the tracing data continues to flow. In this manner,
the instructions represented in the tracing data are stored in
the block 109 in the same order that they were executed.

In the prior art approach of FIG. 1, the size of block 109 is
limited to a less than desirable maximum size because large
contiguous address blocks of system memory space available
for use to store tracing data are often non existent on an
operational computing system. Here, after nominal configu-
ration of the computer, typically, only smaller slices of system
memory address space remain available for the storage of
tracing data. Moreover, in an OS environment, large blocks of
memory often aren’t available. Memory is typically allocated
in smaller blocks, and by the time tracing is configured there
may be only small fragments of memory available. The tech-
niques described herein allow the user to take advantage of
these many small, disparate blocks to form, in effect, a single
large buffer.

FIG. 2 shows an improved approach in which the tracing
data for a single application may be kept over a number of
thinner slices of contiguous address space within system
memory 205. By storing the tracing data for a single applica-
tion within multiple, thinner slices of contiguous address
space that are spread out over the (e.g., entire) system
memory address range, the total amount of stored tracing data
may exceed that of the single block of contiguous address
space 109 of the prior art approach of FIG. 1 (i.e., the total
amount of utilized memory space utilized by the new
approach exceeds that of the single block 109).

Here, as alluded to above, in the operation of any comput-
ing system, there are apt to be multiple slices of system
memory that are available to store tracing data. The improved
approach attempts to store the tracing datain such slices. In an
embodiment of the improved approach of FIG. 2, the tracing
data does not flow through a TL.B stage or any caching levels
(but the fetching activity of actually executing code and data
does) as discussed above with respect to FIG. 1.

FIG. 3 shows an embodiment of implementing the
approach of FIG. 2. As observed in FIG. 3, there are distinct
slices 311_1 through 311_M, 312_1 through 312_N of sys-
tem memory 305 each having its own respective directory
table 313, 314 that is also stored in system memory 305. That
is, directory table 313 pertains to slices 311_1 through 311_M
and directory table 314 pertains to slices 312_1 through
312_N. Each directory contains individual entries for its asso-
ciated slices. Each entry identifies the size of its correspond-
ing slice and where the slice is located in system memory 305.
Moreover, the total collection of slices for a particular appli-
cation is organized as a linked list. In an embodiment, the
“last” entry in the directory table for a particular group of
slices also identifies the location of the respective directory
table for the “next” group of slices in the linked list that the
tracing data is to be stored into.

As an example, assume that tracing data is to be initially
stored in slices 311_1 through 311_M in succession and then,
upon slice 311_M being “filled”, next begin to be succes-
sively stored in slices 312_1 through 312_N. In order to
accomplish this sequence, upon initialization of the tracing
service (which may be effected by setting a bit in machine
specific register (MSR) space 210 or other form of control
register space, all of which is hereafter referred to as control
register space) the logic circuitry 202 within the processor
200 that is responsible for properly storing the tracing data

10

20

25

30

35

40

45

50

55

60

65

4

initially issues a read request to the system memory interface
204 for the first directory table 313 in the linked list sequence.
In an embodiment, when configuring the tracing service for a
particular application, a first field 220 of control register
space 210 is written to that identifies the base address 314 of
the first directory table 313 in the linked list sequence for the
application. Thus, upon initialization of the tracing service,
logic circuitry 202 issues a read request to system memory
interface 204 containing the base address of the first directory
table 313.

In response to the request, the system memory interface
204 performs a read at the base address 314 of the first
directory table 313 and returns the first entry 313_1 of the
table which identifies the location 340 and size 350 of the first
slice 311_1 where tracing data is to be stored. In an embodi-
ment, the location 340 and size 350 information is kept in a
second field 230 of control register space 210 and is referred
to by logic circuitry 202 as described below.

In an embodiment, location information 340 is the base
address of the first slice 311_1 of system memory where
tracing data is to be stored. As the tracing data begins to flow
from the instruction execution pipeline 201 (noting that in an
embodiment one or both of virtual-to-physical address trans-
lation and caching is avoided as with the prior are approach
discussed just above), logic circuitry 202 constructs write
requests having packets containing the tracing data and
respective addresses that start with the base address 340 of the
first slice 311_1 and increase contiguously as the tracing data
continues to flow. Logic circuitry 202 continuously monitors
how much tracing data has been sent to the memory interface
304 (in an internal register 213) and compares that amount to
the size parameter 350 of the first slice 311_1 (e.g., as kept in
field 230 of control register 210).

In an embodiment, at some time before slice 311_1 is filled
with tracing data, or at the point which 311_1 is filled with
tracing data, logic circuitry 202 issues a read request to the
system memory interface 204 for the next entry 313_2 in the
first directory table 313 which identifies the location 341 and
size 351 of the next slice 311_2. In an embodiment, the
address for the next entry in the directory table is easily
identified because directory table 313 is stored as contiguous
address blocks of address space in system memory 305. In
another embodiment, the directory tables are not imple-
mented as contiguous address blocks and each directory table
entry contains a pointer to the next entry in the table. As such,
in this case, the read information that is returned when a
directory table entry is fetched not only includes the location
and size of the entry’s corresponding slice but also a pointer
to the next entry in the table.

The process described above for storing tracing into the
first slice 311_1 then continues for the second slice 311_2 and
thereafter for the remaining slices up to the last slice 311_M
in the first group of'slices 311 to which the first directory table
313 pertains. Notably, in an embodiment, the last entry
311_M in the first directory table 313 also contains, besides
the location and size of the last slice 311_M, a pointer 315 to
the base address of the second directory table 314. Upon the
last slice 311_M in the first group of slices 311 becoming
filled or imminently close to being filled, logic circuitry 202
will use the pointer 315 to the second directory table 314 to
issue a read request to the system memory interface 204 for
the first entry 314_1 of the second directory table 314.

Alternatively, rather than keep the pointer 315 to the next
directory table in the last entry 311_M for the last slice, a
separate last entry (e.g., 311_M+1 not shown in FIG. 3 for
convenience) may exist in the directory table 313 that only
keeps the pointer 315 to the next table 314. Upon the last slice

US 9,189,360 B2

5

being or becoming full, logic circuitry 202 will issue a read
request for the last entry to the system memory interface 204
to fetch the pointer 315.

The processes described above for the first directory table
313 and first group of slices 311 are then repeated for the
second directory table 314 and second group of'slices 312 and
for all directory tables and respective groups of slices there-
after. Note that in theory there is no limit to the number of
slices or directories, so the amount of tracked data that can be
kept for a single application may be comparatively larger than
the prior art approach of FIG. 1.

It is worthwhile to note that the base address and size of a
particular memory slice where tracing data is to be kept may
be “packed” in a same directory table entry with other base
addresses and respective sizes of other memory slices. For
example, base addresses 340, 341 and sizes 350, 351 may be
“packed” in single directory table entry (e.g., entry 313_1)
along with other base addresses and other sizes of other
system memory slices where tracing data is stored. In this
case, operation is the same as described above except that a
read return of an entry of a directory table returns size and
location information for multiple slices rather than a single
slice. For instance, a single directory table entry may corre-
spond to a cache line that carries a substantial amount of data
(e.g., 64 bytes). As such, base addresses and sizes of many
system memory slices may be kept in the single cache line.
Here, register space 230 (which holds returned base address
and size information) is large enough to hold the entire cache
line. Logic circuitry 202 repeatedly refers to this register
space in succession to fetch each next base address and size
information when a next memory slice is to be utilized
(whereas as before a memory access was utilized to obtain
this information). When the last location and size information
within the cache line is utilized, logic circuitry will access the
next entry in table 313 to fetch a next cache line of size and
location information.

FIG. 4 shows an embodiment of a methodology that sum-
marizes processes discussed just above. As observed in FIG.
4, in order to configure tracing for an application, the base
address of a first directory table is stored in control register
space 401. Upon the start of the tracing service for the appli-
cation, the base address of the first directory table is used to
issue a read request for the first entry of the first directory
table 402. The entry identifies the size and location of the first
slice in memory where tracking can be stored. Tracing data is
then stored in the first slice 403. Upon the first slice being
filled or becoming imminently close to being filled 404, the
identity of the next slice is fetched from the directory table
402 and process 403 is repeated for the second slice. Pro-
cesses 402 and 403 are then repeated for subsequent slices
until the last slice in the group of'slices to which the directory
table pertains is reached or begins to be filled 405, at which
point, the base address for the next directory table is retrieved
401. The process then repeats for (potentially) multiple addi-
tional directory tables and associated groups of slices.

In an embodiment, the user configures the directory tables
and stores them in system memory. The user (e.g., the OS,
guest OS and/or VMM or an individual through any one or
more of these software layers) also “partitions” system
memory such that the directory tables and memory storage
slices are not used or referred to by any applications or other
software of the system. This is accomplished through proper
management of the TLB tables (specifically, they are
arranged so as not to translate any virtual address into a
physical address that corresponds to any directory table space
or storage slice space).

10

15

20

25

30

35

40

45

50

55

60

65

6

A directory table entry may have more fields than size and
location information for any particular memory slice. For
example, in one embodiment there is also a field of informa-
tion that signifies whether output generation should be
stopped (STOP) when the particular memory slice is filled.
This field essentially indicates whether “the end” of the trac-
ing storage has been reached and if so how logic 202 is
supposed to behave in response. As such, the STOP bit is set
in the entry for the last tracing storage memory slice of all the
memory slices. When the last memory slice in the chain is
reached and/or filled, logic 202 shuts down tracing activity. A
second INT field may also be included along with the STOP
field. The INT field is used to indicate whether an interrupt
should also be generated when the end of the associated slice
is reached. For example, if both the STOP and INT bits are set
in an entry, when the associated memory slice is filled, logic
202 will not only stop any further writes of tracing informa-
tion but will also generate an interrupt. If just the STOP bit is
set (i.e., the INT bit is not set), logic 202 will stop write
activity but will not generate an interrupt when the associated
memory slice is filled.

In some embodiments, a STOP bit may never be set in any
of the directories. Instead the pointer in the “last” directory
points back to the base address of the “first” directory. This
will have the effect of writing tracing data circularly such that
older tracing data of a previous cycle in continuously over-
written by newer tracing data from the current cycle.

In additional or alternative embodiments, the same field
location within an entry is used to store the base address for a
memory slice if the entry pertains to a memory slice, or, the
base address/pointer to the next table if the entry does not
pertain to a memory slice but rather is at the end of the
directory table and therefore contains the pointer to the next
table. In this case, an additional field END is included to
indicate which situation exists for the particular entry. If the
END bit is set, this is the last entry in the directory table and
therefore the field contains a pointer to the next table. If the
END bit is not set, the field contains the base address of the
memory slice where tracing data is to be stored (another field
would contain the size of the memory slice). Note that this
could still be the last entry despite the END bit not being set,
if the STOP bit is set.

In the embodiments discussed above, logic circuitry 202
may be implemented as dedicated logic circuitry or a control-
ler/processing core that executes some form of program code,
or some combination of both, in order to perform the actions
discussed above. Any such program code may be stored, e.g.,
in on die storage resource circuitry (e.g., an on die read only
memory (ROM)) coupled to logic 202. The program code
may be (e.g., permanently or quasi permanently) stored in the
storage resource at die manufacture or may be loaded with
each bring up of the processor 200. Logic circuitry 202 may
include queue circuitry to queue the tracing information prior
to a request being created for the memory interface that
requests them to be written into a particular memory slice.

Many instruction execution pipelines support context
switching. Context switching is the notion that an active
hardware thread can be switched out of execution from the
pipeline in favor of another thread. For example, ifa detection
is made that a hardware thread currently executing in the
instruction execution pipeline is idling or otherwise not doing
much work it may be “switched out of” and another tread
“switched into” the instruction execution pipeline. This
switching activity typically involves context switching. Con-
text is the state information of a thread (e.g., the thread’s user

US 9,189,360 B2

7

data and control data). When a thread switch is made, context
information is also switched in/out of active/inactive hard-
ware thread status.

The tracing information held in the memory slices for a
particular thread corresponds to its state/context information.
Thus, if a thread is being traced by logic 202 and a decision is
made to switch the thread out of active status, in an embodi-
ment, logic 202 oversees an action that switches out the
thread’s corresponding tracing information within the system
memory slices to deeper (e.g., non volatile) storage. Logic
202 also oversees the filling of these same slices with the
tracing information (from deeper storage) of the thread that is
being switched into active status (if any). In an embodiment,
the directory tables are left untouched by a context switch.
Alternatively directory table information may also be
switched in/out (however they should proscribe overlapping
memory slice storage space if so0).

Although the above description has pertained largely to the
external storage of tracing information, those of ordinary skill
will understand that tracing information, in a larger sense,
corresponds to “in-situ processor output information”. That
is, information that is generated while a processor is actually
operating (e.g., executing application program code) and pro-
vides insight into the processor’s inner-workings while it was
actually operating. As such the teachings above are applicable
generally to in-situ processor output information and not just
tracing information specifically.

What is claimed is:

1. A method comprising:

referring to first information from a directory table in sys-
tem memory, said first information including location
information and size information of a first slice of the
system memory where first tracing data is to be stored;

tracking an amount of tracing data stored in the first slice of
the system memory and comparing the amount against
the size information; and

before the first slice of the system memory is filled, refer-
ring to second information from said directory table in
the system memory, said second information including
location information and size information of a second
slice of the system memory where second tracing data is
to be stored.

2. The method of claim 1 wherein said method further

comprises:

tracking a second amount of tracing data stored in the
second slice of system memory and comparing the sec-
ond amount against the size information of the second
slice; and

upon recognizing that the second slice of the system
memory is filled or near filled, referring to third infor-
mation from said directory table in the system memory,
said third information including location information
and size information of a third slice of the system
memory where third tracing data is to be stored, said first
slice not being contiguous with said second slice and
said third slice of the system memory.

3. The method of claim 2 further comprising:

referring to pointer information in the directory table that
points to a next directory table in the system memory.

4. The method of claim 3 further comprising:

using said pointer information to obtain fourth information
from said next directory table in the system memory,
said fourth information including location information
and size information of a fourth slice of the system
memory where fourth tracing data is to be stored;

20

25

30

40

45

50

55

8

tracking a third amount of tracing data stored in the fourth
slice of the system memory and comparing the third
amount against the size information of the fourth slice;
and

upon recognizing that the fourth slice of the system

memory is filled or near filled, referring to fifth informa-
tion from said second directory table in the system
memory, said fifth information including location infor-
mation and size information of a fifth slice of the system
memory where fifth tracing data is to be stored, said first
slice not being contiguous with said second, third,
fourth, and fifth slices of the system memory.

5. The method of claim 1 further comprising receiving a
base address of an initial directory table in the system
memory.

6. The method of claim 1 further comprising referring to
information that indicates what behavior is to be performed
when a last memory slice is reached and filled.

7. The method of claim 6 wherein said behavior includes
stopping writing of additional tracing information.

8. The method of claim 7 wherein the behavior includes
generating an interrupt.

9. A processor comprising:

logic circuitry to:

refer to first information from a directory table in system

memory, said first information including location infor-
mation and size information of a first slice of the system
memory where first tracing data is to be stored;

track an amount of tracing data stored in the first slice of the

system memory and compare the amount against the
size information; and

before the first slice of the system memory is filled, refer to

second information from said directory table in the sys-
tem memory, said second information including loca-
tion information and size information of a second slice
of the system memory where second tracing data is to be
stored.

10. The processor of claim 9 wherein said logic circuitry is
further to:

track a second amount of tracing data stored in the second

slice of the system memory and compare the second
amount against the size information of the second slice;
and

upon a recognition that the second slice of the system

memory is filled or near filled, refer to third information
from said directory table in the system memory, said
third information including location information and
size information of a third slice of the system memory
where third tracing data is to be stored, said first slice not
being contiguous with said second slice and said third
slice of the system memory.

11. The processor of claim 10 wherein said logic circuitry
is further to:

refer to pointer information in said directory table that

points to a next directory table in the system memory.

12. The processor of claim 11 wherein said logic circuitry
is further to:

use said pointer information to obtain fourth information

from said next directory table in the system memory,
said fourth information including location information
and size information of a fourth slice of the system
memory where fourth tracing data is to be stored;

track a third amount of tracing data stored in the fourth slice

of system memory and compare the third amount against
the size information; and

upon a recognition that the fourth slice of the system

memory is filled or near filled, refer to fifth information

US 9,189,360 B2

9

from said second directory table in the system memory,
said fifth information including location information
and size information of a fifth slice of the system
memory where fifth tracing data is to be stored.
13. The processor of claim 9 further comprising a base
address of an initial directory table in the system memory.
14. The processor of claim 9 further comprising informa-
tion that indicates what behavior is to be performed when a
last memory slice is reached.
15. The processor of claim 9 wherein said first slice of the
system memory is not contiguous with said second slice of the
system memory.
16. A non-transitory machine readable storage medium
having stored program code that when processed by a
machine causes a method to be performed, the method com-
prising:
referring to first information from a directory table in sys-
tem memory, said first information including location
information and size information of a first slice of the
system memory where first tracing data is to be stored;

tracking an amount of tracing data stored in the first slice of
the system memory and comparing the amount against
the size information; and

before the first slice of the system memory is filled, refer-

ring to second information from said directory table in
the system memory, said second information including
location information and size information of a second
slice of the system memory where second tracing data is
to be stored.

17. The non-transitory machine readable storage medium
of claim 16, wherein the method further comprises:

tracking a second amount of tracing data stored in the

second slice of system memory and comparing the sec-
ond amount against the size information of the second
slice; and

15

30

10

upon recognizing that the second slice of the system
memory is filled or near filled, referring to third infor-
mation from said directory table in the system memory,
said third information including location information
and size information of a third slice of the system
memory where third tracing data is to be stored, said first
slice not being contiguous with said second slice and
said third slice of the system memory.

18. The non-transitory machine readable storage medium
of claim 17, wherein the method further comprises:

referring to pointer information in the directory table that

points to a next directory table in the system memory.
19. The non-transitory machine readable storage medium
of claim 18, wherein the method further comprises:
using said pointer information to obtain fourth information
from said next directory table in the system memory,
said fourth information including location information
and size information of a fourth slice of the system
memory where fourth tracing data is to be stored;

tracking a third amount of tracing data stored in the fourth
slice of the system memory and comparing the third
amount against the size information of the fourth slice;
and

upon recognizing that the fourth slice of the system

memory is filled or near filled, referring to fifth informa-
tion from said second directory table in the system
memory, said fifth information including location infor-
mation and size information of a fifth slice of the system
memory where fifth tracing data is to be stored, said first
slice not being contiguous with said second, third,
fourth, and fifth slices of the system memory.

20. The non-transitory machine readable storage medium
of claim 16, wherein the method further comprises receiving
a base address of an initial directory table in the system
memory.

